特邀报告嘉宾
特邀报告嘉宾:卡内基梅隆大学 Kathleen M. Carley 教授
报告题目:What Lies Beneath: From sentiment to stance to influence
简介:Kathleen M. Carley is a professor in the School of Computer Science in the department - Institute for Software Research - at Carnegie Mellon University. She is the director of the Center for Computational Analysis of Social and Organizational Systems (CASOS). Kathleen M. Carley's research combines cognitive science, social networks and computer science to address complex social and organizational problems. She has co-edited several books in the computational organizations and dynamic network area.
报告摘要:Today most people accept that humans are boundedly rational; i.e., that they are limited in how much information they can process and how much they can access. What fewer recognize is that human intelligence is mitigated by emotions. In this talk, an emotional intelligence perspective is taken. It is argued that understanding behavior online means understanding how emotions are manipulated and how they are used to manipulate behavior. Sentiment miners, stance detectors and techniques for assessing influence maneuvers are discussed, as are their strengths, limitations, and utility for understanding online activity and possible linkages to offline behavior. Using data and examples from diverse events, the value of an emotional intelligence approach to understanding online messaging and its impact on offline behavior is reflected on.
特邀报告嘉宾
特邀报告嘉宾:兰州大学 胡斌教授
报告题目:心理生理计算与情感智能
简介:胡斌,国家海外高层次人才入选者,973首席科学家,教育部计算机学科教指委委员,科技委委员,IEEE Transaction on Computational Social Systems主编,国际社会神经科学中国分会副主席等;获2019年度中国专利金奖,2018年度国家技术发明奖二等奖、2016年度教育部技术发明奖一等奖(均为第一完成人)等。
报告摘要:心理生理学是一门研究人体心理行为与生理反应之间关联性的重要心理学基础学科,通过将情绪活动等心理变化作为自变量,将人体各项生理反应作为因变量,提高心理学研究的可操作性和可测量性,并进一步实现从生理数据来揭示心理活动的特点和规律,最终推断出人的心理状态或精神状态。然而,心理活动和生理反应之间的对应关系往往都是复杂的一对多、多对一或多对多关系,很难直接获得理想化的一对一关系。同时,生理测量数据越来越具有“大数据”特点,使得传统的依赖于先验知识的分析方法已无法适用。因此,在生理“大数据”时代,如何从多个角度研究心理和生理间复杂的对应关系,从中找出具有可靠性、复现性、普遍性的一对一关系,就成为心理生理学研究所面临的一大难题。为此,提出了“心理生理计算”这一研究方法,从工程学角度入手,通过将信息获取、计算及分析的思想与方法应用到心理生理学研究当中,分析复杂的心理生理映射关系,实现对不同心理状态更为客观、及时和准确的解释,量化评估以及推理计算,为进一步实现情感智能及精神障碍客观量化诊疗提供了一种工程化的方法。
特邀报告嘉宾
特邀报告嘉宾:帝国理工学院 Björn W. Schuller教授
报告题目:Affective Speech Analysis: Talk does not cook rice, but it tells computers a lot
简介:Björn W. Schuller received his diploma, doctoral degree, habilitation, and Adjunct Teaching Professor in Machine Intelligence and Signal Processing all in EE/IT from TUM in Munich/Germany. He is Full Professor of Artificial Intelligence and the Head of GLAM at Imperial College London/UK, Full Professor and Chair of Embedded Intelligence for Health Care and Wellbeing at the University of Augsburg/Germany, co-founding CEO and current CSO of audEERING – an Audio Intelligence company based near Munich and in Berlin/Germany, independent research leader within the Alan Turing Institute and Royal Statistical Society Lab’s Data, Analytics and Surveillance Group, as part of the UK Health Security Agency, and permanent Visiting Professor at HIT/China amongst other Professorships and Affiliations. Previous stays include Guest Professor at Southeast University in Nanjing/China, Full Professor at the University of Passau/Germany, Key Researcher at Joanneum Research in Graz/Austria, and the CNRS-LIMSI in Orsay/France. He is a Fellow of the IEEE and Golden Core Awardee of the IEEE Computer Society, Fellow of the BCS, Fellow of the ISCA, Fellow and President-Emeritus of the AAAC, and Senior Member of the ACM. He (co-)authored 1,200+ publications (45k+ citations, h-index=97), is Field Chief Editor of Frontiers in Digital Health and was Editor in Chief of the IEEE Transactions on Affective Computing amongst manifold further commitments and service to the community. His 30+ awards include having been honoured as one of 40 extraordinary scientists under the age of 40 by the WEF in 2015. He served as Coordinator/PI in 15+ European Projects, is an ERC Starting and DFG Reinhart-Koselleck Grantee, and consultant of companies such as Barclays, GN, Huawei, Informetis, or Samsung.
报告摘要:After more than 25 years of concentrated efforts in Speech Emotion Recognition and more general Affective Speech Analysis, we seem to be entering a new level of performance and functionality. Empowered by the recent advents in Deep Learning a new leap forward can be reported in performance such as by self-supervised learning and transformers. Likewise, even the “valence-gap”, i.e., the challenge of recognising valence or positivity from the speech acoustics, could recently largely be overcome. At the same time, topics and solutions from the larger field of Artificial Intelligence are increasingly inherited and targeted. These include adversarial and other attacks, explainability, fairness, or “green” effectiveness. This talk will set off with a brief overview on the development of the field before diving into the latest and greatest in deep learning for affective speech analysis. It will then move towards such late challenges towards the ambitious goal of reaching well-deserved “trustworthiness” of the technology. Results from a multitude of challenges co-organised by the presenter will illustrate performances. To round off, a perspective will be given on the most pressing remaining goals to accomplish in this young and exciting field. Stay tuned – affective speech analysis is expected a soon to be everyday reality for most of us.
CCAC 2022 大会主席
苏州大学 周国栋教授
苏州大学特聘教授、博士生导师。苏州大学自然语言处理实验室主任。研究方向:自然语言理解、信息抽取、自然语言认知等。近5年发表SCI期刊和CCFA/B类会议论文120多篇,主持NSFC项目4个(包括重点项目2个)。据Google Scholar统计,论文引用11000多次。目前担任ACM TALLIP副主编、《软件学报》责任编委、中国计算机学会自然语言处理专委会主任、中国计算机学会理事、中国人工智能学会自然语言理解专委会副主任、中国人工智能学会常务理事。
CCAC 2022 大会主席
香港中文大学 黄锦辉教授
香港中文大学工程学院副院长、系统工程与工程管理学系教授及创新科技中心主任、创业研究中心副主任,高可信软件技术教育部重点实验室(香港中文大学分实验室)主任、哈尔滨工业大学(深圳)特聘教授。研究兴趣集中在数据库及中文资讯处理方面,并于多份国际刊物、会议及书籍中发表超过三百份报告。彼为IEEE高级成员,计算语言学协会(ACL)、英国计算机学会(BCS)、国际工程技术学会(IET)和香港工程学会(HKIE)会士,以及香港工业专业评审局「2020荣誉院士」,亦为ACM亚洲语言资讯处理杂志(TALIP)和《国际计算语言学和中文处理期刊》的创刊编辑。
CCAC 2022 大会程序委员会主席
清华大学 黄民烈教授
国家杰出青年基金获得者。清华大学计算机系智能技术与系统实验室副主任,中文信息学会自然语言生成与智能写作专委会副主任,CCF学术工作委员会秘书长。研究方向为自然语言生成、对话系统、阅读理解等。曾获得中国人工智能学会吴文俊人工智能科技进步奖一等奖(第一完成人),中文信息学会汉王青年创新奖,阿里巴巴创新合作研究奖。发表国际顶级会议或期刊论文超过150余篇,5次获得国际主流会议的最佳论文或提名(IJCAI、ACL、SIGDIAL等),著有《现代自然语言生成》一书。谷歌引用超过11100多次,h指数为51。担任顶级期刊TNNLS、TACL、CL编委,10余次担任ACL/EMNLP的领域主席或资深领域主席。研发多个对话模型或平台如ConvLab、Eva等,研发首个共情对话机器人Emohaa,创立北京聆心智能科技有限公司,以AI赋能心理健康领域。
CCAC 2022 大会程序委员会主席
新加坡管理大学 蒋静教授
新加坡管理大学计算机与信息系统学院教授,数据科学和人工智能科研组主任。从事自然语言处理方向的研究,主攻方向包括问答,社交媒体中的自然语言处理,情感分析,信息抽取及多模态处理。曾担任计算语言学顶级国际期刊Computational Linguistics编委、国际会议EMNLP-IJCNLP 2019程序委员会主席,及多次担任自然语言处理方向重要国际会议(包括ACL,EMNLP,NAACL,COLING)的领域主席。现任TACL执行编辑。在斯坦福大学获得学士和硕士学位,伊利诺伊大学厄巴纳-香槟分校获得博士学位。
联系方式:cips_ccac@163.com
近期将开放会议注册,敬请期待!